【運動也需保護力,就靠薑黃素!】

【運動也需保護力,就靠薑黃素!】 

全球掀起一股運動風潮,為了提升運動時的保護力及靈活力,平常可以多補充有薑黃成份的營養品!薑黃具抗氧化功能,幫助血液循環、促進新陳代謝。更棒的是,獨特的Meriva複合型薑黃抽出物是薑黃與大豆卵磷脂合成,可以增加薑黃素的吸收,讓您運動更添助益、每天充滿活力! #薑黃素 #運動 #健康 

保肝的薑黃素

台灣 | 香港 | 美國 | 中國 & 全球





 
 
保肝的薑黃素

台灣 | 香港 | 美國 | 中國 & 全球

 

  • 或支援肝臟健康
  • 有助維持細胞健康與完整
  • 有助維持健康的穀胱甘肽水平
  • 隨年紀增長支援認知健康
  • 提供抗氧化功能 




薑黃精華─補肝排毒配方為具科學支援的營養補充品,配方有助維持健康的穀胱甘肽水平、維持細胞健康與完整及提供抗氧化功能,從而支援肝臟及認知健康。

穀胱甘肽為人體中的主要抗氧化物,可保護腦部和人體其他組織免受自由基侵襲。此外,穀胱甘肽循環利用同為強效抗氧化物的維他命C及E。因此,薑黃精華─補肝排毒配方有助維持人體中重要的抗氧化活動。

成分

薑黃素(BCM-95 ® )科學家一直留意到印度香料薑黃對健康帶來的多種好處。薑黃含有活性植物化學成份薑黃素。目前為止,薑黃素的生物可用性偏低,需服用高劑量方有益健康。BCM-95提供具更高生物可用性的薑黃素,帶來多方面的健康好處。
這是怎樣做到的?傳統的95%萃取物集中取自薑黃根一個部份。薑黃的生物活性成份含有「類薑黃素」,而薑黃素是最重要的分子。研究顯示,薑黃素對健康有廣泛益處。BCM-95®代表薑黃根的天然程度,它是100%純天然的。
抗氧化物越來越受關注,我們需要知道哪種營養是抗氧化物並了解其資料。薑黃素就是其中一種抗氧化物。
薑黃素對認知健康的支援是其最廣獲研究的功能之一。研究顯示,薑黃素可通過血液與腦部間的屏障,支援腦部澱粉樣β蛋白的正常製造。這隨我們年紀增長有助支援認知健康。薑黃素的另一個特質,是能夠促進腦部穀胱甘肽、超氧歧化酶及過氧化氫酶的正常水平。

西蘭花籽萃取物
過去25年,一直有文獻記錄西蘭花及其他十字花科蔬菜的健康好處與保護功能。西蘭花籽萃取物含豐富蘿蔔硫素硫配糖體。蘿蔔硫素支援穀胱甘肽合成酶等酵素的正常製造。蘿蔔硫素亦促進人體的自然酵素抗氧化防禦機制,並為強效的間接抗氧化成份。
蘿蔔硫素硫配糖體可支援人體的自然防禦機制,並維持健康的穀胱甘肽水平。穀胱甘肽為人體的主要抗氧化物。它是重要的分子和強效的抗氧化物,保護腦部和人體其他組織免受自由基侵襲。此外,穀胱甘肽亦循環利用可中和自由基的維他命C及E。

硒(甲硒胺酸)
硒是硒蛋白(例如谷胱甘肽過氧化物酶)的必要輔因子。

常見問答

甚麼是薑黃素?薑黃素是香料薑黃的成份,經常用於印度食物。薑黃素的化學結構令薑黃呈黃色,並常用作食物色素。然而,薑黃素對人類可能有更重要的效用。

服用薑黃精華─補肝排毒配方有副作用嗎?

副作用並不常見,一般只限於服用大量後會造成輕微胃部不適。

服用
薑黃素會帶來甚麼好處?薑黃素支援細胞健康與完整性,同時有助維持健康的穀胱甘肽水平。研究亦顯示薑黃素提供抗氧化功能,並隨我們年紀增長支援認知健康。

服用薑黃精華─補肝排毒配方有任何注意事項嗎?

如果你正在服用薄血丸(Coumadin)、其他抗血小板/抗凝血藥、其他處方藥物,或患有長期疾病,使用本品前請向你的醫生諮詢。婦女在懷孕或哺乳期間請勿使用本產品。

甚麼人可服用
薑黃精華─補肝排毒配方?任何18歲或以上人士均可服用薑黃精華─補肝排毒配方。

我可同時服用
Isotonix產品與薑黃精華─補肝排毒配方嗎?
可以,但你必須按照每種產品的使用方法。

薑黃精華─補肝排毒配方的每天建議服用份量是多少?
每天服用一粒,可空肚或飽肚服用。

薑黃素含有任何致敏原嗎?

此產品不含大豆、小麥、麩質或奶類等致敏原。

為何
薑黃精華─補肝排毒配方要加入西蘭花籽萃取物?西蘭花籽萃取物可能有助支援肝臟健康,並有助維持健康的穀胱甘肽水平。

服用薑黃精華─補肝排毒配方安全嗎?

薑黃精華─補肝排毒配方安全及不含有害物質。本產品在美國製造,並於經美國食品及藥物管理局檢測的設備生產,符合良好生產規範。顧客對本產品的質量和安全可絕對有信心。

 

 科學


  • Araujo, C. and Leon, L. Biological activities of Curcuma longa L . Memorias do Instituto Oswaldo Cruz. 96(5): 723-728, 2001.
  • Bhattacharyya, S., et al. Curcumin prevents tumor-induced T cell apoptosis through Stat-5a-mediated Bcl-2 induction. Journal of Biological Chemistry. 282(22): 15954-15964.
  • Biswas, S., et al. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxidants and Redox Signaling. 7(1-2): 32-41, 2005.
  • Cheng, Y., et al. Effects of curcumin on peroxisome proliferator-activated receptor gamma expression and nuclear translocation/redistribution in culture-activated rat hepatic stellate cells. Chinese Medical Journal. 120(9): 794-801, 2007.
  • Churchill, M., et al. Inhibition of intestinal tumors by curcumin is associated with changes in the intestinal immune cell profile. Journal of Surgical Research. 89(2): 169-175, 2000.
  • Cornblatt, B., et al. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. 28(7): 1485-1490, 2007.
  • Dairam, A., et al. Curcuminoids, curcumin, and demethoxycurcumin reduce lead-induced memory deficits in male Wistar rats. Journal of Agricultural and Food Chemistry. 55(3): 1039-1044, 2007.
  • Dickinson, D., et al. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB. 17(3): 473-475, 2003.
  • Fahey, J., et al. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proceedings of the National Academy of Sciences of the United States of America. 99(11): 7610-7615, 2002.
  • Farombi, E., et al. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food and Chemical Toxicology. 46(4): 1279-1287, 2008.
  • Funk, J., et al. Turmeric extracts containing curcuminoids prevent experimental rheumatoid arthritis. Journal of Natural Products. 69(3): 351-355, 2006.
  • Gao, X. and Talalay, P. Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proceedings of the National Academy of Sciences of the United States of America. 101(28): 10446-10451, 2004.
  • Garcia-Alloza, M., et al. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. Journal of Neurochemistry. 102(4): 1095-1104, 2007.
  • Higdon, J., et al. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacological Research. 55(3): 224-236, 2007.
  • Howells, L., et al. Comparison of oxaliplatin- and curcumin-mediated antiproliferative effects in colorectal cell lines. International Journal of Cancer. 121(1): 175-183, 2007.
  • Jagetia, G. and Aggarwal, B. "Spicing up" of the immune system by curcumin. Journal of Clinical Immunology. 27(1): 19-35, 2007.
  • Johnson, J., et al. Curcumin for chemoprevention of colon cancer. Cancer Letters. 255(2): 170-181, 2007.
  • Juge, N., et al. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cellular and Molecular Life Sciences. 64(9): 1105-1127, 2007.
  • Kaur, G., et al. Inhibition of oxidative stress and cytokine activity by curcumin in amelioration of endotoxin-induced experimental hepatoxicity in rodents. Clinical and Experimental Immunology. 145(2): 313-321, 2006.
  • Kim, G., et al. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. Journal of Immunology. 174(12): 8116-8124, 2005.
  • Kurup, V., et al. Immune response modulation by curcumin in a latex allergy model. Clinical and Molecular Allergy. 5: 1, 2007.
  • Lim, G., et al. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience. 21(21): 8370-8377, 2001.
  • Lin, J. Molecular targets of curcumin. Advances in Experimental Medicine and Biology. 595: 227-243, 2007.
  • Magalska, A., et al. Curcumin induces cell death without oligonucleosomal DNA fragmentation in quiescent and proliferating human CD8+ cells. Acta Biochimica Polonica. 53(3): 531-538, 2006.
  • Maheshwari, R., et al. Multiple biological activities of curcumin: a short review. Life Sciences. 78(18): 2081-2087, 2006.
  • Mathuria, N. and Verma, R. Ameliorative effect of curcumin on aflatoxin-induced toxicity in DNA, RNA and protein in liver and kidney of mice. Acta Poloniae Pharmaceutica. 64(6): 497-502, 2007.
  • Monograph. Curcuma longa (turmeric). Alternative Medicine Review. 6(suppl): S62-S66, 2001.
  • Morimitsu, Y., et al. A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway. Journal of Biological Chemistry. 277(5): 3456-3463, 2002.
  • Myzak, M. and Dashwood, R. Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Letters. 233(2): 208-218, 2006.
  • Myzak, M., et al. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB. 20(3): 506-508, 2006.
  • Naik, R., et al. Protection of liver cells from ethanol cytotoxicity by curcumin in liver slice culture in vitro. Journal of Ethnopharmacology. 95(1): 31-37, 2004.
  • Nanji, A., et al. Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. American Journal of Physiology. 284(2): G321-G327, 2003.
  • Ng, T., et al. Curry consumption and cognitive function in the elderly. American Journal of Epidemiology. 164(9): 898-906, 2006.
  • Nishinaka, T., et al. Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element. Toxicology Letters. 170(3): 238-247, 2007.
  • Noyan-Ashraf, M., et al. Dietary approach to decrease aging-related CNS inflammation. Nutritional Neuroscience. 8(2): 101-110, 2005.
  • O’Connell, M. and Rushworth, S. Curcumin: potential for hepatic fibrosis therapy? British Journal of Pharmacology. 153(3): 403-405, 2007.
  • Osawa, T. Nephroprotective and hepatoprotective effects of curcuminoids. Advances in Experimental Medicine and Biology. 595: 407-423, 2007.
  • Pal, S., et al. Amelioration of immune cell number depletion and potentiation of depressed detoxification system of tumor-bearing mice by curcumin. Cancer Detection and Prevention. 29(5): 470-478, 2005.
  • Pari, L. and Amali, D. Protective role of tetrahydrocurcumin (THC) an active principle of turmeric on chloroquine induced hepatotoxicity in rats. Journal of Pharmacy and Pharmaceutical Sciences. 8(1): 115-123, 2005.
  • Perkins, S., et al. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiology, Biomarkers, and Prevention. 11(6): 535-540, 2002.
  • Rushworth, S., et al. Role of protein kinase C delta in curcumin-induced antioxidant response element-mediated gene expression in human monocytes. Biochemical and Biophysical Research Communications. 341(4): 1007-1016, 2006.
  • Salvioli, S., et al. Curcumin in cell death processes: A challenge for CAM of age-related pathologies. Evidence-based Complementary and Alternative Medicine. 4(2): 181-190, 2007.
  • Scapagnini, G., et al. Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxidants and Redox Signaling. 8(3-4): 395-403, 2006.
  • Shen, G., et al. Modulation of nuclear factor E2-related factor 2-mediated gene expression in mice liver and small intestine by cancer chemopreventive agent curcumin. Molecular and Cancer Therapeutics. 5(1): 39-51, 2006.
  • Shen, S., et al. Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes. World Journal of Gastroenterology. 13(13): 1953-1961, 2007.
  • Shishodia, S., et al. Curcumin: getting back to the roots. Annals of the New York Academy of Sciences. 1056: 206-217, 2005.
  • Shu, J., et al. The study of therapeutic effects of curcumin on hepatic fibrosis and variation of correlated cytokine. Journal of Chinese Medicinal Materials. 30(11): 1421-1425, 2007.
  • Shu, J., et al. Therapeutic effects of curcumin treatment on hepatic fibrosis. Chinese Journal of Hepatology. 15(10): 753-757, 2007.
  • Shukla, P., et al. Protective effect of curcumin against lead neurotoxicity in rat. Human and Experimental Toxicology. 22(12): 653-658, 2003.
  • Smith, T., et al. Allyl-isothiocyanate causes mitotic block, loss of cell adhesion and disrupted cytoskeletal structure in HT29 cells. Carcinogenesis. 25(8): 1409-1415, 2004.
  • Srinivasan, M., et al. Protective effect of curcumin on gamma-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutation Research. 611(1-2): 96-103, 2006.
  • Tang, L., et al. Potent activation of mitochondria-mediated apoptosis and arrest in S and M phases of cancer cells by a broccoli sprout extract. Molecular Cancer Therapeutics. 5(4): 935-944, 2006.
  • Thangapazham, R., et al. Multiple molecular targets in cancer chemoprevention by curcumin. AAPS Journal. 8(3): E443-E449, 2006.
  • Thejass, P. and Kuttan, G. Antimetastatic activity of Sulforaphane. Life Sciences. 78(26): 3043-3050, 2006.
  • Thejass, P. and Kuttan, G. Augmentation of natural killer cell and antibody-dependent cellular cytotoxicity in BALB/c mice by sulforaphane, a naturally occurring isothiocyanate from broccoli through enhanced production of cytokines IL-2 and IFN-gamma. Immunopharmacology and Immunotoxicology. 28(3): 443-457, 2006.
  • Thejass, P. and Kuttan, G. Immunomodulatory activity of Sulforaphane, a naturally occurring isothiocyanate from broccoli (Brassica oleracea). Phytomedicine. 14(7-8): 538-545, 2007.
  • Wakabayashi, N., et al. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proceedings of the National Academy of Sciences of the United States of America. 101(7): 2040-2045, 2004.
  • Wei, Q., et al. Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochimica et Biophysica Acta. 1760(1): 70-77, 2006.
  • Wu, A., et al. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. 197(2): 309-317, 2006.
  • Xu, Y., et al. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Research. 1122(1): 56-64, 2006.
  • Yadav, V., et al. Immunomodulatory effects of curcumin. Immunopharmacology and Immunotoxicology. 27(3): 485-497, 2005.
  • Yang, F., et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Journal of Biological Chemistry. 280(7): 5892-5901, 2005.
  • Ye, S., et al. Effect of curcumin on the induction of glutathione S-transferases and NADP(H):quinone oxidoreductase and its possible mechanism of action. Acta Pharmaceutica Sinica. 42(4): 376-380, 2007.
  • Zhang, L., et al. Curcuminoids enhance amyloid-beta uptake by macrophages of Alzheimer's disease patients. Journal of Alzheimer’s Disease. 10(1): 1-7, 2006.
  • Zheng, S. and Chen, A. Curcumin suppresses the expression of extracellular matrix genes in activated hepatic stellate cells by inhibiting gene expression of connective tissue growth factor. American Journal of Physiology. 290(5): G883-G893, 2006.
  • Zheng, S. and Chen, A. Disruption of transforming growth factor-beta signaling by curcumin induces gene expression of peroxisome proliferator-activated receptor-gamma in rat hepatic stellate cells. American Journal of Physiology. 292(1): G113-G123, 2007.
  • Zheng, S., et al. De novo synthesis of glutathione is a prerequisite for curcumin to inhibit hepatic stellate cell (HSC) activation. Free Radical Biology and Medicine. 43(3): 444-453, 2007.

保肝的薑黃素

台灣 | 香港 | 美國 | 中國 & 全球

Clemant Siu

• 香港長大, 美籍華裔, 現居台北 • 曾讀香港大一設計學院修讀設計, 美國Artcenter修讀網頁設計 • 十多年平面設計, 印刷, 網頁設計, 網路行銷經驗 • 業餘畫家, 插畫師

• 十年美國AM1430電台主持-(K歌之王)

• 美國TLS體重管理教練>

No comments:

Post a Comment